文章概述:本文主要包含三部分:第一部分,主要介绍什么是 Table API,从概念角度进行分析,让大家有一个感性的认识;第二部分,从代码的层面介绍怎么使用 Table API;第三部分,介绍 Table API 近期的动态。文章结构如下:
Apache Flink 零基础入门(五):流处理核心组件Time
Apache Flink 零基础入门(四):客户端操作的 5 种模式
Apache Flink 全领域干货合集
流式处理术语解释Exactly-once与Effectively-once
分布式事件流处理已逐渐成为大数据领域的热点话题。该领域主要的流处理引擎(SPE)包括 Apache Storm、Apache Flink、Heron、Apache Kafka(Kafka Streams)以及 Apache Spark(Spark Streaming)等。处理语义是围绕 SPE 最受关注,讨论最多的话题之一,其中“严格一次(Exactly-once)”是很多引擎追求的目标之一,很多 SPE 均宣称可提供“严格一次”的处理语义。
流处理系统中的“exactly Once”语义保证
Apache Flink 零基础入门(三):DataStream API 编程
前面已经为大家介绍了 Flink 的基本概念以及安装部署的过程,从而希望能够帮助读者建立起对 Flink 的初步印象。本次课程开始,我们将进入第二部分,即 Flink 实际开发的相关内容。本次课程将首先介绍 Flink 开发中比较核心的 DataStream API 。我们首先将回顾分布式流处理的一些基本概念,这些概念对于理解实际的 DataStream API 有非常大的作用。然后,我们将详细介绍 DataStream API 的设计,最后我们将通过一个例子来演示 DataStream API 的使用。